

Challenging intersections: Securing sustainable food systems in turbulent times

Nordic-Baltic food systems conference and policy forum 26-28.5.2025 Helsinki, Finland

Book of abstracts and program

NORDIC-BALTIC FOOD SYSTEMS NETWORK

Nordic-Baltic food systems network

Publisher Finnish Environment Institute, University of Helsinki

Editor: Minna Kaljonen

Funders: Nordic Joint Committee for Agricultural and Food Research, Strategic Research Council Finland, Lund University, Bioeconomy Graduate Research School, Finnish Food and Drink Industries' Federation, Federation of Finnish Learned Societies

Lay-out: Finnish Environment Institute Cover image: Adobe Stock

The Abstract book will be published online after the NFN2025 conference

Publication year 2025

Seisto, A. et al. What kind of opportunities and future vision cellular agriculture	could have f
Finland?	225
Sell, M. & Ashkenazy-Garini, A. Food system labs as a method for transforming f	ood systems
through transdisciplinary research and action	229
Seppälä, T. et al. Incorporating relational domain into the food environment frar	nework 232
Holm, L. et al. Why is the association between greenhouse gas emission and adh	erence to
dietary guidelines so weak?	
Stoddard. F. Can the Nordic-Baltic region be free of soy imports?	
Tidåker. P. et al. Environmental and economic effects from intermediate crops in	n a cropping
system in Sweden	
Tienhaara, A. et al. Do public preferences for agriculture shift? Evidence from re	peated choi
experiments in Finland	243
Tlikkainen. A. A simple lifetime productivity indicator to assess milk's carbon foc	torint and
support herd-level decisions	246
$F_{\text{Lomasiukka}} \leq 8 Tarkkin A In the mood for change? Can a single question are$	
proenvironmental food choice changes?	2/Q
Valuieva, K. et al. Balancing agricultural and forestry land use: a practical approa	
valujeva, K. et al. Balancing agricultural and forestry land use. a practical approa	251
Vanhatala A. Porchactives on the role of animal sourced foods in the future per	thorn food
varinatalo, A. Perspectives on the role of animal-sourced loods in the future hor	052
Viire All Towards sustainable food systems - suching concents in policy agent	ZJJ
villa, A-H. Towards sustainable food systems – evolving concepts in policy agend	
virkkunen, H. et al. Framework for quantification of land use–based greenhouse	
according to crop and farm type	
wanying, Y. et al. Nurturing sustainable rood choice: information-based strategy	v to promote
Poster abstracts	263
Bäck. S. et al. Gaps between adults' perceived and actual macronutrient intakes:	self-assessr
relative to nutrition recommendations is challenging	
Beitane, I. et al. Sustainability in food service companies: the case of Latvia	
Bell, Q. et al. Two peas in a pod: a digital twin for climate smart agriculture	
Forsman, L. In search of business models for local and systemically sustainable for	266 ood
Fu. Y. & Irz. X. Optimizing sustainable diets with mycoprotein in Finland	
Gaiani S et al. Increasing resilience of Nordic food systems through agriculture	268
lärviö N et al. A Finnish database for biodiversity impacts of food items consum	ned in Finlan
arvio, N. et al. Arminish database for biodiversity impacts of food items consum	269
Kadulin A et al Why farmers manage or abandon semi-natural grasslands; a sy	stematic rev
of motivations and harriers	270
Kähkönen K et al. Transforming the food system for systemability: the role of a	ari-food clug
in North Savo	51-1000 Clus 071
Tanavote A at al Maat quality of forage fod Hereford heef eattle in a second re	Z/ I
ranavols, A. et al. meat quality of forage-reu nereford beer cattle in a coastal re	
State Organiit Idinii	
Kornonen, K. et al. Perspectives on the potential of legume production and cons	umption fro
farm to fork	umption fro

14

Tānavots, A. et al. Meat quality of forage-fed Hereford beef cattle in a coastal region on small-scale organic farm

<u>Alo Tänavots¹</u>, Marek Tepper¹, Kristi Kerner¹ ¹Estonian University Of Life Sciences

Beef cattle feed was derived mainly from natural coastal grasslands. In winter, the animals were kept in a barn with access to an outdoor walking area. Grain was excluded from the feed ration. The study aimed to monitor the effect of two sires on the quality of young bulls' m. semitendinosus (n=28) over 28 days of wet ageing. A linear model was used for data analysis in R, and the results are presented as least squares means \pm sd.

Meat samples from the offspring of Sire 1 exhibited higher redness (a*) values across all ageing periods compared to those of Sire 2 (p<0.05). Exudate loss increased significantly with longer ageing periods in both sire groups, reaching the highest levels at 28 days (Sire 1: $5.00\pm2.03\%$, Sire 2: $4.04\pm2.92\%$, p<0.05). WHC (filter paper method) decreased with ageing, with a significant reduction at 14 days for Sire 2 (p<0.05). No significant sire or ageing effects were observed for WBSF, pH, or lightness (L*). Bulls sired by Sire 1 tended to have a larger m. semitendinosus area (78.23 \pm 11.39 cm²) compared to those by Sire 2 (72.91 \pm 11.37 cm², p>0.05). Circumference and length of the muscles were not significantly influenced by sire. Fat, protein, ash, and moisture contents were similar between sires, indicating no substantial genetic influence on these traits.

In conclusion, sire influenced specific meat quality traits such as redness and colour stability, while ageing primarily affected water and exudate loss traits, highlighting the combined importance of genetics and post-slaughter handling in optimising meat quality.